
Michael C. Dudzik
Stephen M. Jameson
Editors

27 April – 8 May 2020
Online Only, United States

Sponsored and Published by
SPIE

Volume 11415
Contents

CYBERSECURITY AND COMMUNICATION ISSUES WITH NETWORKED AUTONOMOUS SYSTEMS I

11415 03 Raman-assisted BOTDA performance improvement with the differential pulse-width pair technique and an artificial neural network based fitting algorithm [11415-2]

11415 04 Simulation-based model for surrogate safety measures analysis in automated vehicle-pedestrian conflict on an urban environment [11415-3]

11415 05 Multi point pure pursuit [11415-4]

11415 06 Securing global positioning systems in a blockchain using vehicle-to-everything communications [11415-5]

APPLICATIONS FOR AUTONOMOUS SYSTEMS IN NATIONAL SECURITY AND EMERGENCY RESPONSE

11415 07 Autonomy at the end of the Earth: an inclement weather autonomous driving data set (Invited Paper) [11415-6]

11415 08 Robot coordination in rescue missions [11415-7]

11415 09 Extending free-space mapping to unstructured, off-road environments [11415-8]

JOINT SESSION WITH CONFERENCES 11415 AND 11425: AUTONOMOUS GROUND VEHICLES: SENSING, PROCESSING, AND SAFETY

11415 0B The Mertens Unrolled Network (MU-Net): a high dynamic range fusion neural network for through the windshield driver recognition [11415-18]

11415 0C Monocular depth estimation for vision-based vehicles based on a self-supervised learning method [11415-12]

11415 0D Accuracy of echo detection using differentiation for compact LIDAR implementation [11415-13]

11415 0E C-SLAM: six degrees of freedom point cloud mapping for any environment [11415-14]

11415 0F Unreal as a simulation environment for off-road autonomy [11415-15]

11415 0G SVM-based sensor fusion for improved terrain classification [11415-16]
Comparing machine learning and neural network-based approaches for sign detection and classification in autonomous vehicles [11415-17]
TNO-DSS uses knowledge about system architectures, advanced control systems, systems/software engineering and AI for civil and defense projects. The ultimate automation is found in autonomous systems, where our experience with control and AI methods is thoroughly useful. Finally we contribute to a diverse portfolio of research programs, including robot teleoperation, autonomous swarms, IED detection and control of quantum computers. As a rule our results are not limited to solid reports and recommendations, but include demonstrations, prototypes or fully developed products. Our work. Platform signatures. Solar and infrastructure. Outdoor test facility for BIPV(T). Solar-powered cars. Autonomous vehicle (AV) is regarded as the ultimate solution to future automotive engineering; however, safety still remains the key challenge for the development and commercialization of the AVs. The autonomous technology employed in transportation systems brings opportunities to mitigate or even solve transportation-related economic and environmental issues, and therefore, the autonomous vehicle has been actively studied recently [6]. AV techniques are capable of changing the traditional means of transportation by (i) improving road safety, where human errors account for 94% of the total accidents [7], (ii) enhancing the. The former requires advanced highway infrastructure systems to guide the vehicles, whereas the latter one does not. View program details for SPIE Defense + Commercial Sensing conference on Autonomous Systems: Sensors, Processing and Security for Vehicles & Infrastructure 2020. Session 2: Applications for Autonomous Systems in National Security and Emergency Response. Tuesday 28 April 2020 10:30 AM - 12:40 PM Location: Conv. Ctr. In autonomous vehicle systems whether ground or aerial vehicles and infrastructure-level units communicate among each other continually to ensure safe and efficient autonomous operations. However, different attack scenarios might arise in such environments when a device in the network cannot physically pinpoint the actual transmitter of a certain message. For example, a compromised or a malicious vehicle could send a message with a fabricated location to appear as if it is in the location of another legitimate vehicle, or fabricate multiple messages with fake identities to alter the behavi...