CBEE 102 (3 Cr.) – Engineering Problem Solving and Computations
Winter Quarter 2015
School of Chemical, Biological, and Environmental Engineering
Oregon State University
2015.02.03
COURSE SYLLABUS

Instructor: Travis Walker
Email: travis.walker@oregonstate.edu
Phone: 541.737.7244
Office: Gleeson Hall 211
Office Hours: by appointment

Graduate Teaching Assistants:
Uranbileg Daalkhaijav
Email: daalkkhau@onid.oregonstate.edu
Office: Gleeson Hall 210
Office Hours: Mondays from 1300-1400

Ehsan Taghizadeh
Email: taghizae@onid.oregonstate.edu
Office: Gleeson Hall 206
Office Hours: Mondays from 1400-1500

Robert Robinson
Email: robinrob@onid.oregonstate.edu

Prerequisites: MTH 112 or MTH 251 or MTH 251H
Dates: 2015.01.05-03.13
Lectures: CRN 35683 (CBEE 102) or CRN 37013 (CBEE 102H): M 1700-1750
Classroom: GLFN AUD
Laboratories: either Tuesday & Thursday (TR) or Wednesday & Friday (WF)
See section schedule below for your appropriate section information.
Classroom: GRAF 210

Course Description: (CRN: 36219) CBEE 102. ENGINEERING PROBLEM SOLVING AND COMPUTATIONS (3). Elementary programming and problem-solving concepts implemented using MATLAB software; emphasis on problem analysis and development of algorithms in engineering; application experiences are established through a team-based design competition using the LEGO® NXT microprocessor for data acquisition. Lec/lab. PREREQs: MTH 112 or MTH 251 or MTH 251H

Website: https://oregonstate.instructure.com/
(Please make sure you have access to the Oregon State University Instructure website, since all course materials and announcements will be available there.)
Section Schedule:

<table>
<thead>
<tr>
<th>CRN</th>
<th>Sec</th>
<th>Date</th>
<th>Time</th>
<th>Instructor</th>
<th>GTA/UTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>37014</td>
<td>010</td>
<td>TR</td>
<td>0800-0950</td>
<td>Walker</td>
<td>BH</td>
</tr>
<tr>
<td>38847</td>
<td>020</td>
<td>TR</td>
<td>1000-1150</td>
<td>Walker</td>
<td>BF</td>
</tr>
<tr>
<td>36397</td>
<td>012</td>
<td>TR</td>
<td>1400-1550</td>
<td>Daalkhaijav</td>
<td>BCE</td>
</tr>
<tr>
<td>35686</td>
<td>015</td>
<td>TR</td>
<td>1600-1750</td>
<td>Daalkhaijav</td>
<td>BCE</td>
</tr>
<tr>
<td>35685</td>
<td>011</td>
<td>WF</td>
<td>0800-0950</td>
<td>Taghizadeh</td>
<td>BCH</td>
</tr>
<tr>
<td>35687</td>
<td>013</td>
<td>WF</td>
<td>1000-1150</td>
<td>Taghizadeh</td>
<td>BDF</td>
</tr>
<tr>
<td>35684</td>
<td>010</td>
<td>WF</td>
<td>1200-1350</td>
<td>Daalkhaijav</td>
<td>ADF</td>
</tr>
<tr>
<td>35688</td>
<td>014</td>
<td>WF</td>
<td>1600-1750</td>
<td>Daalkhaijav</td>
<td>ADE</td>
</tr>
</tbody>
</table>

GTA: (A) Daalkhaijav, (B) Taghizadeh, (C) Robinson
UTA: (D) Swann, (E) Murphy, (F) LaJeunesse, (G) Wolterman, (H) Dorn

Course Grading:

- Laboratory Exercises: 20%
- Laboratory Quizzes: 10%
- Group Project: 20%
- Midterm Examination: 20%
- Final Examination: 30%

Grade Policy: Work received up to 24 hours late will receive 50% credit. Work received beyond 24 hours late will receive 0% credit. Group work on homework is permitted, but each student must turn in his or her own individual assignment with a list of contributors. If you determine that a regrade is necessary, the entire assignment will be regraded.

Final performance percentage will be assigned a minimum letter grade by the following scale (implying that the percentage requirements for a particular grade may be decreased at the instructor’s sole discretion but will not be increased):

- 94-100 A 74-76 C
- 90-93 A- 70-73 C-
- 87-89 B+ 67-69 D+
- 84-86 B 64-66 D
- 80-83 B- 60-63 D-
- 77-79 C+ 0-60 F
Course Overview & Objectives: By the end of the course, a student will be able to do the following:

- use a programming language (i.e., MATLAB) to perform simple calculations and analyze data;
- use a programming language (i.e., MATLAB) to develop appropriate plots of data from a variety of input data methods. Include relevant components such as text comments, arrows, legends, etc.;
- write programs in MATLAB following good programming practice, using scalar operations, array operations, control structures, integrated math functions, and user-written functions; and
- make meaningful contributions to team efforts to design a software solution to a problem.

Course Structure:

Communication:

The Canvas announcement tab and email to ONID addresses will be used for course communication. I will only use the lecture Canvas (CRN 35683; not individual labs). All scores will be posted in the Canvas grade center.

Lectures:

Monday lectures will be used for the following:

- Content instruction,
- Laboratory overview,
- One midterm exam, and
- Exam feedback and questions.

Attendance in class is expected. You are expected to be punctual and to minimize disruptions. Cell-phones need to be off during class. Also, no use of laptops or other electronic devices for activity outside of its use in this class will be tolerated. If you miss a class, you are responsible for obtaining lecture notes from other students.

Laboratories:

Each student should be enrolled in a laboratory section. Two laboratory periods exist each week for each section. During each laboratory a lab-based activity will be completed. You must bring a laptop with the ability to access Microsoft Excel and MATLAB. Help with access can be found at the end of this syllabus. Note that the Oregon State University College of Engineering has mandated the possession of a usable laptop:

Web link: http://engineering.oregonstate.edu/laptop-requirements

Students will be graded on this activity during laboratory. To achieve full credit, students must be engaged in course activities for the entire period. Student who successfully com-
complete the task before the end of the period and have had their completion approved by the instructor will be allowed to leave early if they desire. The assignment will be multi-part and increase in complexity. The grade for the laboratory exercises will be based on the following:

- the student was in attendance;
- the student was prepared with an Excel and MATLAB enabled laptop;
- the student remained productive the entire lab period;
- the student understands the concepts of the activity; and
- the student achieved a minimum level of competency on the activity.

I encourage discussion and peer-to-peer consultation and guidance during the laboratory. I do not allow cell phone or internet (email, web surfing, etc.) use while in the laboratories. If the lab instructor observes these activities, the grade will be lowered. Also, if file sharing between students within one lab, or between students in different labs, is observed or suspected, the instructor will file academic dishonesty claims immediately. If you are over 15 minutes late, the instructor will give you a zero for the laboratory exercise.

The lowest two laboratory scores will be dropped; therefore, no make-up laboratories will exist regardless of the reason – no exceptions. The purpose of this policy is to reduce logistics for emergencies in a large class. I advise students to save these “drop” opportunities for true emergencies.

Twice during the term, students will complete a quiz during the laboratory section. Make-up quizzes will fall under the policies of examinations

Group Project:

A course project will be completed by groups of three (3) students. The project will be used as an overall assessment of the students’ understanding of key concepts described throughout the course. The project will consist of a MATLAB based code (60% of the project grade), a project report (30% of the project grade), and some additional Administrative Activities including various checkpoints and evaluations (10% of the project grade). Please refer to the additional Group Project description for details beyond the information listed below.

- Lec 01: during the first lecture of the course (2015.01.05), a brief overview of the project will be given during the introduction of the course.
- Lab 01: prior to the end of the first laboratory section (Lab 01A), you will be required to complete a homework assignment surveying your interests and skills. This survey will help the instructors organize the students into teams.
- Lab 02: during the second laboratory section (Lab 01B), you will be organized into teams based on the results of the survey.
- Lec 04: during the fourth lecture of the course (2015.01.26), a theoretical background of the Monte Carlo method and a theoretical background of the diffusion problem will be given.
• Lab 04: during the fourth week of laboratory exercises, you will complete a brief experiment with your team to collect brute force data.
• Lec 05: at 1700 on 2015.02.02, the minutes of your required meeting with acknowledgment of the assigned tasks will be due.
• Lec 06: at 1700 on 2015.02.09, a penultimate flow chart of your project code will be due.
• Lec 09: at 1700 on 2015.03.02, your team project will be due.

Examinations:

Two examinations will exist in this course: one midterm examination during the Monday lecture period in week 06 and one final examination during finals week. The dates of the examinations are the following:

• Week 06, Monday, 2015.02.09 from 1700-1750 in class
• Finals Week, Monday, 2015.03.16 from 2000-2150

The midterm exam and the final exam will be delivered in two different rooms according to lab sections (subject to change):

• Tuesday and Thursday lab sections (i.e., Sec 1, 2, 3, & 4) will take exams in GLFN AUD.
• Wednesday and Friday lab sections (i.e., Sec 5, 6, 7, & 8) will take exams in CORD 1109.

Please sit with an open chair between you and another student during the exam (i.e., occupy every other seat). During exams you may only use your copy of the required textbook. You cannot “share” a textbook during an exam or use copies of pages from the book. Note that you may run out of time if you try to “look up” every question. You may write notes in your textbook about topics covered in class but not included in the textbook. Laptops, calculators, or phones are not allowed during exams.

Make-up exams will only be allowed in the case of documented emergencies or with prior authorization (i.e., prior to the examination time) from the instructor. If you must miss one of the exams for an emergency situation, please let me know as soon as possible (travis.walker@oregonstate.edu). You will not have an opportunity to make up the exam without an approved reason.

Important Dates:

Add/Drop Deadline 2015.01.16
Midterm 2015.02.09 1100-1250
Withdraw Deadline 2015.02.20
Final Exam 2015.03.16 2000-2150
Tentative Course Outline (2015.02.03):

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Tuesday/Wednesday</th>
<th>Thursday/Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, Syllabus</td>
<td>Survey, MATLAB</td>
<td>MATLAB, LEGO NXT</td>
</tr>
<tr>
<td>2</td>
<td>Methodology</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>3</td>
<td>No Lecture, MLKJ Day</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>4</td>
<td>Monte Carlo & Diffusion</td>
<td>MATLAB, Quiz</td>
<td>Experiment, LEGO NXT</td>
</tr>
<tr>
<td>5</td>
<td>Trouble Shooting & Debugging</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>6</td>
<td>Midterm Exam</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>7</td>
<td>Graphing & Root Finding</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>8</td>
<td>Matrix Mathematics</td>
<td>MATLAB, Quiz</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>9</td>
<td>Project Due, Solution</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>10</td>
<td>Student Driven Review</td>
<td>MATLAB</td>
<td>LEGO NXT</td>
</tr>
<tr>
<td>11</td>
<td>Final Exam</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
OSU STATEMENTS:

From the Office of the Dean of Students (1995.12.13): Behaviors which are disruptive to the learning environment will not be tolerated, and will be referred to the Office of the Dean of Students for disciplinary action. Behaviors which create a hostile, offensive or intimidating environment based on gender, race, ethnicity, color, religion, age, disability, marital status or sexual orientation will be referred to the Affirmative Action Office.

Web link: http://oregonstate.edu/admin/stucon/index.htm

Statement Regarding Students with Disabilities Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 737-4098.

Web link: http://ds.oregonstate.edu/prospective/

Academic Honesty Any instances of dishonesty in academic work will be treated according to OSU Academic Regulations. The Statement of Expectations for Student Conduct is given in the OUS OAR #576-015-0020, accessible at the following link:

Web link: http://oregonstate.edu/studentconduct/home/

The policy is stated below:

Academic or Scholarly Dishonesty is defined as an act of deception in which a Student seeks to claim credit for the work or effort of another person, or uses unauthorized materials or fabricated information in any academic work or research, either through the Student’s own efforts or the efforts of another.

It includes:

(i) CHEATING - use or attempted use of unauthorized materials, information or study aids, or an act of deceit by which a Student attempts to misrepresent mastery of academic effort or information. This includes but is not limited to unauthorized copying or collaboration on a test or assignment, using prohibited materials and texts, any misuse of an electronic device, or using any deceptive means to gain academic credit.

(ii) FABRICATION - falsification or invention of any information including but not limited to falsifying research, inventing or exaggerating data, or listing incorrect or fictitious references.

(iii) ASSISTING - helping another commit an act of academic dishonesty. This includes but is not limited to paying or bribing someone to acquire a test or assignment, changing someone’s grades or academic records, taking a test/doing an assignment for someone else by any means, including misuse of an electronic device. It is a violation of Oregon state law to create and offer to sell part or all of an educational assignment to another person (ORS 165.114).

(iv) TAMPERING - altering or interfering with evaluation instruments or documents.

(v) PLAGIARISM - representing the words or ideas of another person or presenting someone else’s words, ideas, artistry or data as one’s own, or using one’s own previously submitted work. Plagiarism includes but is not limited to copying another person’s work (including unpublished material) without appropriate referencing, presenting someone else’s opinions and theories as one’s own, or working jointly on a project and then submitting it as one’s own.
ACCESSING COE PROGRAMS AND DOCUMENTS 2015.01.05:

1. Verify that you have a valid OSU ONID and ENGR computing account. More information on getting access to and using ENGR computing resources is available here: http://engineering.oregonstate.edu/computing/gettingstarted/224
 To create an ENGR computing account (if you have not done so already),
 (a) go to https://secure.engr.oregonstate.edu:8000/teach.php
 (b) select “Create a new account” at the bottom of the screen.
 (c) follow the prompts to create your ENGR account.
 It is strongly suggested that you immediately log in and verify that you can access the Web, printers, etc. from your ENGR account.
 If you are working from off-campus, you will need to access COE systems through the secure Virtual Private Network (VPN).
 For more information and to download software to set up the VPN, please visit http://oregonstate.edu/helpdocs/network/vpn-campus-access

2. You must have a laptop computer with access to wireless networks and which is capable of running Microsoft Excel and MATLAB. You will lose points for any lab section that you do not have a laptop with access to Excel and MATLAB.
 Access to a laptop computer is a requirement for students in the OSU College of Engineering (c.f., http://engineering.oregonstate.edu/laptop-requirements).
 For general information about OSU COE computing resources, visit http://engineering.oregonstate.edu/computing/personal
 If you need help with your ENGR account, setting up your laptop, installing software, or access to the ENGR wireless network, please contact the COE Wireless Helpdesk. The Helpdesk is located in Dearborn 120A and is open from 9AM - 11PM, 7 days a week. http://engineering.oregonstate.edu/computing/personal/155

3. MATLAB can only be installed on your personal laptop by the COE Wireless Helpdesk in Dearborn.

4. Microsoft Office is made available for free by OSU. Obtain installation access using the following URL.
 http://oregonstate.edu/office365

5. Accessing MATLAB and MS Office through Citrix/XenApp Web (no need to purchase Microsoft Office)
 Both MATLAB and Microsoft Office (including Excel) can be accessed remotely, at no cost, from COE servers using the Citrix or XenApp Web mechanisms.
 Citrix and XenApp allow you to run a wide variety of software applications on your PC or Mac system, as well as some iOS, Android and Chrome-based devices. A convenient Web-based interface makes access to the applications simple and can be accessed at https://apps.engr.oregonstate.edu/Citrix/EngineeringWeb/
 You will need to install the Citrix Receiver software to use applications on the Citrix servers. Follow the directions at the site below to get started with Citrix: http://engineering.oregonstate.edu/computing/citrix/

If you need help with any of these steps, please contact the OSU College of Engineering Helpdesk: http://engineering.oregonstate.edu/computing/policies/155 or https://secure.engr.oregonstate.edu/forms/contact.php?to=support
The general principle of material balance calculations is to put and solve a number of independent equations involving number of unknowns of compositions and mass flow rates of streams entering and leaving the system or process. The process can be defined as one or a series of operations in which physical and chemical treatments are carried out and a desired product is result at the end such as distillation, drying, absorption, chemical manufacture, etc. The system can be defined as any arbitrary portion of a process that you want to consider for analysis such as a reactor.