Intratumoral partitioning for characterizing spatial heterogeneity. The advent of radiomics has assigned a central role to quantitative data analytics targeting medical image features algorithmically extracted from large volumes of images. Apart from the ultimate goal of supporting diagnostic, prognostic, and therapeutic decisions, radiomics is computationally attractive due to specific strengths: scalability, efficiency, and precision. Optimization is achieved by highly sophisticated statistical and machine learning algorithms, but it Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an. External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution-adapting delivery to natural movement-a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed.