Solution to problems in structural steel design to BS 5950:Part 1: 2000

Synopsis:

The aim of this book is to provide students and practicing engineers with a guide of structural steel design to meet the requirement of BS 5950:Part 1: 2000 Structural Use of Steelwork in Building. The emphasis has been to illustrate the clauses in the code rather than to match practical cases exactly. The first part of the book gives basic design concepts of structural elements comprising beam, column, connection, roof truss, and plate girder. In the second part, it presents worked examples of design of structural steel elements which are of commonly used in building frame structures. The examples have different design problem, which require different approach of loading analysis and design formula.
Solution to problems in structural steel design to BS 5950:Part 1: 2000

Table Of Content:

Figures
Table
Foreword by Vice Chancellor
Foreword by President
Preface

PART 1 NOTES ON STRUCTURAL STEEL DESIGN

CHAPTER 1 INTRODUCTION
Design Method
Structural Steel Sections
Material Properties
Design Strength
Structural Loadings
Section Classification

CHAPTER 2 BEAM
Distribution of Loads from Slabs to Beams
Restraining Conditions of Beams
Design Checks

CHAPTER 3 COLUMN
Modes of Failure of Column

Section Classification

Effective Length

Analysis and Design of Building Frame Structure

Design of Column Subjected to Axial Load Only (Clause 4.7.4)

Design of Column Subjected to Load at Nominal Eccentricity – Simple Construction (Clause 4.7.7)

Design of Column Subjected to Top Axial Load and Moment (Clause 4.8.3)

CHAPTER 4 DESIGN OF CONNECTION

Introduction

Bolted Connection

Spacing of Bolts

Mode of Failure

Bolt Capacity

Eccentric Connection

Welded Connection

Effective Length of Fillet Weld

Eccentric Connection

CHAPTER 5 TRUSS

Loading and Analysis

Design of Purlins

Design of Tension Members

Design of Compression Members

Slenderness of Angle and Channel Sections (Clause 4.7.2)

Determination of Segment Length LVV, LAA and LBB
CHAPTER 6 PLATE GIRDER

Design of Plate Girder

Minimum Requirement of Web and Flange

Shear Capacity

Moment Capacity

End Anchorage

Design of Web Stiffeners

PART II PROBLEM EXAMPLES

CHAPTER 7 DESIGN OF BEAM

Problem 1.1 Simply Supported Beam with Full Restraint

Problem 1.2 Simply Supported Beam without Lateral Restraint

Problem 1.3 Simply Supported Beam with Lateral Restraint at Points Along the Span

Problem 1.4 Beam with Cantilever Span without Lateral Restraint

Problem 1.5 Beam with End Moment

CHAPTER 8 DESIGN OF COLUMN

Problem 2.1 Axially Loaded Column

Problem 2.2 Axially Loaded Column with Tie Beam at Mid-height

Problem 2.3 Axially Loaded Column with Unsymmetrical Loading

Problem 2.4 Columns in Simple Construction Design

Problem 2.5 Column in Rigid Construction Design

CHAPTER 9 DESIGN OF CONNECTION
Problem 3.1 Bolted and Welded Connections Subjected to Direct Shear
Problem 3.2 Bolted Connection Subjected In–plane Rotation
Problem 3.3 Welded Connection Subjected to In–plane Rotation
Problem 3.4 Welded Connection Subjected to Out–of–plane Rotation
Problem 3.5 Bolted Connection Subjected to Out–of–plane Rotation
Problem 3.6 End Plate Connection
Problem 3.7 Welded Connection Subjected to In–plane Rotation
Problem 3.8 Welded Connection with Unsymmetrical Weld
Problem 3.9 Double Angle Web Cleat Connection
Problem 3.10 Fin Plate Connection

CHAPTER 10 DESIGN OF TRUSS
Problem 4.1 Cantilever Roof Truss with Rectangular Section Members and Purlins
Problem 4.2 Roof Truss with Purlins on the Top Nodes
Problem 4.3 Design of Purlins Using Channel Section
Problem 4.4 Roof Truss with Purlins on the Top Rafter
Problem 4.5 Truss with Tension Members Subjected to Coexistent Axial Force and Bending Moment
Problem 4.6 Calculation of Members Forces in a Roof Truss Subjected to Wind Load

CHAPTER 11 DESIGN OF PLATE GIRDER
Problem 5.1 Check of Design Capacity of Plate Girder
Problem 5.2 Design of Plate Girder
Structural Steel are the structural elements that make up the frame that are essential to supporting the design loads, e.g. beams, columns, braces, plate, trusses, and fasteners. It does not include for example cables, ladders, chutes, grating, stairs, catwalks, handrails or ornamental metal. Note column line locations designated by numerical and alphanumerical designations in circles. Plan views typically show the dimensional spacing between column lines. Column lines are usually located to the centerline of the column, which oftentimes coincides with the centerline of a beam, girder or truss. Lui, E.M. Structural Steel Design. Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999. Structural Steel Design. 1. E. M. Lui. Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY. 3.1 Materials Stress-Strain Behavior of Structural Steel. Types of Steel: Fire-proof of Steel. Corrosion Protection of Steel. Structural Steel Shapes. Structural Fasteners. Weldability of Steel. 3.2 Design Philosophy and Design Formats. Design Philosophy. Design Formats. 3.3 Tension Members. Allowable Stress Design. Load and Resistance Factor Design. Pin-Connected Members. Threaded Rods. Structural Steel Design, Structural Dynamics. 2. When the ultimate limit states are reached, the whole structure or part of it collapses. 1.3.2 Serviceability limit states. (5) Deflection; (6) Vibration (for example, wind-induced oscillation); (7) Repairable damage due to fatigue; (8) Corrosion and durability. The serviceability limit states, when reached, make the structure or part of it unfit for normal use but do not indicate that collapse has occurred. Documents Similar To Lecture Notes Structural Steel Design. Carousel Previous Carousel Next. chapter1. Uploaded by. Batepola Bac. Shotcreting With Ecc. Uploaded by. Joseph Stalin. Part 1: Dimensions and Properties. Part 2: Design of flexural members (Fy = 30 ksi). Part 3: Design of flexural members (Fy = 65 ksi). Part 4: Design of compression members (Fy = 30 ksi). Part 5: Design of compression members (Fy = 65 ksi). The dimensions and property tables are applicable to sections of any grade of steel and have been calculated from the nominal geometry of the cross-sections. Footnotes to the tables give information on availability in duplex and austenitic grades. At present, there is no specification on section sizes of stainless steel sections for structural applications. Consequently, a wide variety of sizes and shapes is used in practice. Note that the design wall thickness is equal to the nominal wall thickness for stainless steel square and rectangular HSS.
Structural design calculate ce brongth ah aohedto gusseir plate fe parti. Structural Design, Spring 2020 - Prof Tom Panayotidi Lecture notes for the steel design p... View more. University. Columbia University in the City of New York. Course. STRUCTURAL DESIGN (E3125). Uploaded by. Emma Zee. and March 2009. English version. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Eurocode 3: Calcul des structures en acier - Partie 1-1: Règles générales et règles pour les bâtiments. Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. EN 1993 is intended to be used with Eurocodes EN 1990 - Basis of Structural Design, EN 1991 - Actions on structures and EN 1992 to EN 1999, when steel structures or steel components are referred to. EN 1993-1 is the first of six parts of EN 1993 Design of Steel Structures. It gives generic design rules intended to be used with the other parts EN 1993-2 to EN 1993-6. It also gives supplementary rules applicable only to buildings. Structural stainless steel design tables. In accordance with AISC DG27: structural stainless steel. Part 1: Version 1.1 11/22/2017 Always refer to www.steel-stainless.org/usdesigntables for the latest version. SCI (The Steel Construction Institute) is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. Note: Welded sections are available both in austenitic and duplex stainless steel. Part 1: Version 1.1 11/22/2017 Always refer to www.steel-stainless.org/usdesigntables for the latest version. Nominal Wt. 1 introduction: the structural design process. _1.1 problem formulation. Before starting to design a structure it is important to clarify what purpose it is to serve. Although this book is about steel structures, steel is often used with concrete, not only in the form of reinforcing rods, but also in composite construction where steel beams support concrete slabs and are connected by shear studs so steel and concrete behave as a single structural unit (Figs.1.4, 1.5).